login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038608
a(n) = n*(-1)^n.
21
0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59, 60, -61, 62, -63, 64, -65
OFFSET
0,3
COMMENTS
a(n) is the determinant of the (n+1) X (n+1) matrix with 0's in the main diagonal and 1's elsewhere. - Franz Vrabec, Dec 01 2007
Sum_{n>0} 1/a(n) = -log(2). - Jaume Oliver Lafont, Feb 24 2009
Pisano period lengths: 1, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, ... (is this A066043?). - R. J. Mathar, Aug 10 2012
a(n) is the determinant of the (n+1) X (n+1) matrix whose i-th row, j-th column entry is the value of the cubic residue symbol ((j-i)/p) where p is a prime of the form 3k+2 and n < p. - Ryan Wood, Nov 09 2017
a(n-1) is the difference in the number of even minus odd parity derangements (permutations with no fixed points) in symmetric group S_n. - Julian Hatfield Iacoponi, Aug 01 2024
LINKS
Tanya Khovanova, Recursive Sequences
László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
FORMULA
G.f.: -x/(1+x)^2.
E.g.f: -x*exp(-x).
a(n) = -2*a(n-1) - a(n-2) for n >= 2. - Jaume Oliver Lafont, Feb 24 2009
a(n) = A003221(n+1)-A000387(n+1). - Julian Hatfield Iacoponi, Aug 01 2024
MAPLE
A038608 := n->n*(-1)^n; seq(A038608(n), n=0..100);
MATHEMATICA
Array[# (-1)^# &, 66, 0] (* Michael De Vlieger, Nov 18 2017 *)
Table[If[EvenQ[n], n, -n], {n, 0, 70}] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(Magma) [n*(-1)^n: n in [0..80]]; // Vincenzo Librandi, Jun 08 2011
(PARI) a(n)=n*(-1)^n \\ Charles R Greathouse IV, Dec 07 2011
(Haskell)
a038608 n = n * (-1) ^ n
a038608_list = [0, -1] ++ map negate
(zipWith (+) a038608_list (map (* 2) $ tail a038608_list))
-- Reinhard Zumkeller, Nov 24 2012
(Python)
def A038608(n): return -n if n&1 else n # Chai Wah Wu, Nov 14 2022
CROSSREFS
Cf. A002162 (log(2)).
Cf. A001477.
Cf. A003221, A000387 (even, odd derangements).
Sequence in context: A374012 A001478 A001489 * A105811 A209662 A272813
KEYWORD
sign,easy
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998
EXTENSIONS
Edited by Frank Ellermann, Jan 28 2002
STATUS
approved