This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038607 a(n) is the smallest prime number k such that k > n*pi(k), where pi(k) denotes the prime counting function. 5
 2, 11, 37, 127, 347, 1087, 3109, 8419, 24317, 64553, 175211, 480881, 1304707, 3523901, 9558533, 25874843, 70115473, 189961529, 514272533, 1394193607, 3779851091, 10246935679, 27788566133, 75370121191, 204475052401, 554805820711, 1505578023841, 4086199302113, 11091501631019, 30109570413007 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is about exp(n+1+1/(n+1)). - Charles R Greathouse IV, Sep 05 2011 LINKS Giovanni Resta, Table of n, a(n) for n = 1..50 FORMULA a(n) = prime(A038606(n)) = A000040(A038606(n)). EXAMPLE For n=3, the 12th prime (37) is the first one satisfying p(k) > 3k. MATHEMATICA k = 1; Do[ While[ Prime[k] < n*k, k++ ]; Print[Prime[k]], {n, 1, 25} ] PROG (PARI) k=1; n=1; forprime(p=3, 4e9, if(p/n++>k, print1(p", "); k++)) \\ Charles R Greathouse IV, Sep 06 2011 CROSSREFS Cf. A038606, A038623. Sequence in context: A178138 A220888 A289616 * A079009 A097651 A320540 Adjacent sequences:  A038604 A038605 A038606 * A038608 A038609 A038610 KEYWORD nonn,nice AUTHOR Vasiliy Danilov (danilovv(AT)usa.net) 1998 Jul EXTENSIONS Extended by Robert G. Wilson v and Ray Chandler, Dec 01 2004 a(26)-a(30) from Charles R Greathouse IV, Sep 05 2011, Sep 06 2011 a(31)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 21:37 EST 2019. Contains 319206 sequences. (Running on oeis4.)