login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038611 Primes not containing digit '3'. 6
2, 5, 7, 11, 17, 19, 29, 41, 47, 59, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 149, 151, 157, 167, 179, 181, 191, 197, 199, 211, 227, 229, 241, 251, 257, 269, 271, 277, 281, 401, 409, 419, 421, 449, 457, 461, 467, 479, 487, 491, 499, 509, 521, 541, 547, 557 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of primes of A052405. - Michel Marcus, Feb 22 2015

Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..50000

James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.

MATHEMATICA

Select[Prime[Range[70]], DigitCount[#, 10, 3] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(600) | not 3 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011

(PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p), , 8), 3), print1(p, ", ")); ); \\ Michel Marcus, Feb 22 2015

(Python)

from sympy import isprime

i=j=1

while j<=50000:

....if isprime(i)==True and str(i).count("3")==0:

........print str(j)+" "+str(i)

........j+=1

....i+=1 # Indranil Ghosh, Feb 07 2017

CROSSREFS

Cf. A000040, A052405.

Sequence in context: A020605 A045348 A023207 * A265761 A023213 A162575

Adjacent sequences:  A038608 A038609 A038610 * A038612 A038613 A038614

KEYWORD

nonn,easy,base

AUTHOR

Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998

EXTENSIONS

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 03:08 EST 2019. Contains 319370 sequences. (Running on oeis4.)