login
A036875
Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) <= cn(2,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 10, 4, 2, 0, 0, 21, 12, 8, 2, 0, 40, 29, 26, 8, 3, 75, 63, 68, 26, 12, 143, 127, 161, 70, 40, 277, 250, 346, 171, 111, 541, 479, 713, 382, 279, 1056, 911, 1398, 813, 643, 2036, 1718, 2671, 1646, 1407, 3863, 3221, 4975, 3226, 2919, 7207, 5979, 9116
OFFSET
1,17
COMMENTS
Also, number of partitions of n such that cn(3,5) < cn(2,5) = cn(4,5) <= cn(0,5) = cn(1,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A265421 A137252 A228623 * A036877 A049763 A328290
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved