login
A036872
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(3,5) <= cn(2,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 1, 0, 0, 1, 6, 3, 1, 0, 3, 12, 8, 3, 2, 9, 23, 18, 8, 6, 22, 48, 38, 21, 17, 50, 103, 77, 47, 44, 104, 218, 158, 102, 102, 217, 448, 317, 216, 222, 434, 898, 629, 444, 468, 859, 1740, 1232, 888, 948, 1667, 3289, 2367, 1749, 1872, 3185, 6082, 4466, 3365, 3618, 5972, 11038
OFFSET
1,14
COMMENTS
Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(3,5) <= cn(0,5) = cn(1,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A122083 A098158 A110319 * A036871 A036876 A229038
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved