login
A036877
Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 12, 4, 2, 0, 0, 29, 12, 8, 2, 0, 63, 31, 26, 8, 3, 127, 71, 70, 26, 12, 249, 151, 171, 70, 40, 475, 309, 382, 173, 111, 897, 609, 812, 392, 281, 1677, 1173, 1642, 849, 653, 3111, 2220, 3212, 1746, 1445, 5712, 4141, 6099, 3477, 3035
OFFSET
1,23
COMMENTS
Also, number of partitions of n such that cn(3,5) < cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A137252 A228623 A036875 * A049763 A328290 A182878
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved