login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036879
If n = (p_1)^(m_1)...(p_k)^(m_k) then a(n) = (p_1)^((p_1)^(m_1) - 1)...(p_k)((p_k)^(m_k) - 1).
1
1, 2, 9, 8, 625, 18, 117649, 128, 6561, 1250, 25937424601, 72, 23298085122481, 235298, 5625, 32768, 48661191875666868481, 13122, 104127350297911241532841, 5000, 1058841, 51874849202, 907846434775996175406740561329, 1152
OFFSET
1,2
COMMENTS
These integers are refactorable: the number of divisors divides the number itself.
LINKS
Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
Simon Colton, HR - Automatic Theory Formation in Pure Mathematics. [Wayback Machine copy]
FORMULA
(p_1)^(m_1)...(p_k)^(m_k) -> (p_1)^((p_1)^(m_1) - 1)...(p_k)((p_k)^(m_k) - 1).
EXAMPLE
a(6) = 18 because 6 = 2^(1)3^(1) -> 2^(2^(1) - 1)3^(3^(1) - 1) = 18.
MATHEMATICA
f[p_, e_] := p^(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, Sep 24 2023 *)
PROG
(PARI) a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 2] = f[i, 1]^f[i, 2] - 1); factorback(f); \\ Michel Marcus, Dec 08 2014
CROSSREFS
Cf. A033950.
Sequence in context: A230283 A121067 A073904 * A281389 A073927 A198358
KEYWORD
nonn,mult
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
STATUS
approved