login
Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:40:03

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,1,0,0,0,12,4,2,0,0,29,

%T 12,8,2,0,63,31,26,8,3,127,71,70,26,12,249,151,171,70,40,475,309,382,

%U 173,111,897,609,812,392,281,1677,1173,1642,849,653,3111,2220,3212,1746,1445,5712,4141,6099,3477,3035

%N Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(3,5) < cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,23

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013