login
Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) <= cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:37:51

%S 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,1,0,0,0,10,4,2,0,0,21,12,8,2,0,40,

%T 29,26,8,3,75,63,68,26,12,143,127,161,70,40,277,250,346,171,111,541,

%U 479,713,382,279,1056,911,1398,813,643,2036,1718,2671,1646,1407,3863,3221,4975,3226,2919,7207,5979,9116

%N Number of partitions of n such that cn(3,5) < cn(0,5) = cn(1,5) <= cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(3,5) < cn(2,5) = cn(4,5) <= cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,17

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013