login
A036873
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 1, 6, 0, 0, 0, 3, 11, 0, 0, 1, 9, 20, 0, 0, 3, 20, 39, 0, 1, 9, 44, 79, 0, 3, 23, 87, 162, 1, 9, 53, 173, 326, 3, 23, 114, 330, 640, 9, 56, 236, 629, 1217, 23, 123, 468, 1175, 2253, 56, 263, 905, 2177, 4072, 126, 534, 1710, 3963, 7216, 272, 1058, 3167, 7129, 12575
OFFSET
1,14
COMMENTS
Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5) = cn(3,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A027185 A035641 A242434 * A081130 A358623 A360224
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved