login
A036855
Number of partitions of n such that cn(0,5) = cn(2,5) <= cn(1,5) = cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 1, 1, 0, 6, 0, 5, 3, 0, 11, 1, 15, 9, 0, 20, 3, 36, 20, 1, 39, 9, 75, 44, 3, 79, 23, 147, 87, 9, 162, 53, 274, 173, 23, 327, 114, 504, 330, 56, 642, 236, 914, 630, 123, 1223, 468, 1657, 1177, 263, 2267, 906, 2977, 2183, 534, 4105, 1712, 5323, 3977, 1059, 7286, 3173, 9412
OFFSET
1,13
COMMENTS
Also, number of partitions of n such that cn(3,5) = cn(4,5) <= cn(0,5) = cn(1,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A166353 A110235 A036856 * A147985 A147987 A036860
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved