OFFSET
1,8
COMMENTS
LINKS
Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
FORMULA
The basic idea is to iterate the reciprocation-sum mapping x/y -> x/y+y/x.
Let x be an indeterminate, P(1)=x, Q(1)=1 and for n>1, define P(n)=P(n-1)^2+Q(n-1)^2 and Q(n)=P(n-1)*Q(n-1), so that P(n)/Q(n)=P(n-1)/Q(n-1)-Q(n-1)/P(n-1).
EXAMPLE
P(1) = x
P(2) = x^2+1
P(3) = x^4+3*x^2+1
P(4) = x^8+7*x^6+13*x^4+7x^2+1
so that, as an array, the sequence begins with:
1 0
1 0 1
1 0 3 0 1
1 0 7 0 13 0 7 0 1
MATHEMATICA
p[1] = x; q[1] = 1; p[n_] := p[n] = p[n-1]^2 + q[n-1]^2; q[n_] := q[n] = p[n-1]*q[n-1]; row[n_] := CoefficientList[p[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Nov 24 2008
STATUS
approved