login
A036852
Number of partitions of n such that cn(1,5) <= cn(0,5) = cn(2,5) < cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 3, 0, 2, 0, 2, 5, 0, 5, 0, 6, 10, 2, 9, 0, 17, 23, 6, 19, 3, 40, 53, 17, 37, 10, 86, 119, 42, 78, 31, 174, 250, 96, 162, 81, 343, 503, 202, 334, 196, 661, 974, 412, 670, 435, 1256, 1836, 812, 1318, 919, 2358, 3385, 1563, 2527, 1855, 4372, 6140, 2950, 4750, 3622, 8005
OFFSET
1,12
COMMENTS
Also, number of partitions of n such that cn(1,5) <= cn(3,5) = cn(4,5) < cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A242086 A160973 A036853 * A260941 A352996 A329918
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved