login
A036850
Number of partitions of n such that cn(0,5) = cn(1,5) = cn(2,5) <= cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 1, 0, 3, 0, 2, 5, 1, 5, 0, 5, 15, 2, 10, 1, 9, 36, 5, 23, 2, 19, 76, 11, 53, 5, 37, 148, 23, 117, 11, 78, 276, 47, 242, 25, 159, 506, 97, 477, 51, 322, 916, 195, 904, 107, 630, 1654, 387, 1663, 215, 1207, 2962, 752, 2993, 428, 2246, 5276, 1431, 5296, 828, 4097, 9299, 2667
OFFSET
1,12
COMMENTS
Also, number of partitions of n such that cn(1,5) = cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A301569 A301568 A036851 * A260492 A308400 A369816
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved