login
A036857
Number of partitions of n such that cn(0,5) = cn(2,5) < cn(1,5) = cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 1, 0, 6, 0, 0, 3, 0, 11, 1, 0, 9, 0, 20, 3, 0, 20, 1, 39, 9, 0, 44, 3, 79, 23, 1, 87, 9, 162, 53, 3, 173, 23, 327, 114, 9, 330, 56, 642, 236, 23, 630, 123, 1223, 468, 56, 1177, 263, 2267, 906, 126, 2183, 534, 4105, 1712, 272, 3977, 1059, 7286, 3173, 561, 7162, 2033, 12724
OFFSET
1,13
COMMENTS
Also, number of partitions of n such that cn(3,5) = cn(4,5) < cn(0,5) = cn(1,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A035655 A353323 A239446 * A359270 A318508 A100655
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved