login
A036859
Number of partitions of n such that cn(1,5) < cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 1, 0, 0, 10, 0, 4, 0, 2, 21, 0, 12, 0, 8, 40, 2, 29, 0, 26, 75, 8, 63, 3, 68, 140, 26, 127, 12, 161, 268, 70, 246, 40, 346, 513, 171, 467, 111, 709, 985, 382, 873, 279, 1386, 1866, 808, 1620, 643, 2633, 3491, 1631, 2982, 1402, 4877, 6414, 3178, 5448, 2904
OFFSET
1,19
COMMENTS
Also, number of partitions of n such that cn(1,5) < cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A115633 A115713 A199571 * A036861 A120324 A136630
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved