login
A036856
Number of partitions of n such that cn(0,5) = cn(2,5) < cn(1,5) <= cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 1, 1, 0, 6, 0, 3, 3, 1, 12, 1, 8, 9, 3, 23, 4, 18, 21, 9, 48, 12, 38, 48, 23, 102, 32, 78, 99, 53, 216, 76, 159, 205, 117, 444, 169, 321, 408, 250, 888, 359, 639, 805, 515, 1720, 734, 1255, 1556, 1038, 3249, 1459, 2417, 2967, 2043, 6002, 2833, 4572, 5553, 3940, 10886
OFFSET
1,13
COMMENTS
Also, number of partitions of n such that cn(3,5) = cn(4,5) < cn(1,5) <= cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A119467 A166353 A110235 * A036855 A147985 A147987
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved