OFFSET
0,3
COMMENTS
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^3, -x^4) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function. - Michael Somos, Dec 29 2014
Euler transform of period 7 sequence [ 1, 1, 0, 0, 1, 1, 0, ...].- Michael Somos, Dec 29 2014
G.f.: 1 / (Product_{k>0} (1 - x^(7*k - 6)) * (1 - x^(7*k - 5)) * (1 - x^(7*k - 2)) * (1 - x^(7*k - 1))). - Michael Somos, Dec 29 2014
G.f.: (Product_{k>0} (1 + x^k)) * (Sum_{k>=0} x^(2*k^2) / (Product_{i=1..k} (1 - x^(2*i)) * (1 + x^(2*i-1)) * (1 + x^(2*i)))). - Michael Somos, Dec 31 2014
a(n) ~ 2^(1/4) * cos(Pi/14) * exp(2*Pi*sqrt(2*n/21)) / (3^(1/4) * 7^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 13 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^-1 + q^41 + 2*q^83 + 2*q^125 + 3*q^167 + 4*q^209 + 6*q^251 + ...
MAPLE
# See A035937 for GordonsTheorem
A035939_list := n -> GordonsTheorem([1, 1, 0, 0, 1, 1, 0], n):
A035939_list(40); # Peter Luschny, Jan 22 2012
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / Product[ (1 - x^(7 k - 1)) (1 - x^(7 k - 2)) (1 - x^(7 k - 5)) (1 - x^(7 k - 6)), {k, Ceiling[n/7]}], {x, 0, n}]; (* Michael Somos, Dec 29 2014 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^7] QPochhammer[ x^2, x^7] QPochhammer[ x^5, x^7] QPochhammer[ x^6, x^7] ), {x, 0, n}]; (* Michael Somos, Dec 29 2014 *)
PROG
(Sage) # See A035937 for GordonsTheorem
def A035939_list(len) : return GordonsTheorem([1, 1, 0, 0, 1, 1, 0], len)
A035939_list(40) # Peter Luschny, Jan 22 2012
(PARI) {a(n) = my(A); if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 -[0, 1, 1, 0, 0, 1, 1][k%7 + 1] * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 29 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Missing a(0)=1 prepended by Michael Somos, Dec 29 2014
Name simplified by George Beck, Aug 27 2023
STATUS
approved