OFFSET
1,3
COMMENTS
Case k=4, i=2 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015
MAPLE
# See A035937 for GordonsTheorem
A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n):
A035941_list(40); # Peter Luschny, Jan 22 2012
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 12 2015 *)
PROG
(Sage) # See A035937 for GordonsTheorem
def A035941_list(len) : return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len)
A035941_list(40) # Peter Luschny, Jan 22 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved