This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035938 Number of partitions in parts not of the form 7k, 7k+2 or 7k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 2 are greater than 1. 3
 1, 1, 1, 2, 3, 3, 5, 6, 8, 10, 13, 16, 21, 25, 31, 38, 47, 56, 69, 82, 99, 118, 141, 166, 199, 233, 275, 322, 379, 440, 516, 598, 696, 805, 933, 1074, 1242, 1425, 1639, 1878, 2154, 2458, 2812, 3202, 3650, 4148, 4716, 5344, 6064, 6857, 7758, 8758, 9888, 11136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Case k=3,i=2 of Gordon Theorem. Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(-x^2, -x^5) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function. - Michael Somos, Dec 30 2014 Euler transform of period 7 sequence [ 1, 0, 1, 1, 0, 1, 0, ...]. - _Michael Somos, Feb 03 2012 _ G.f.: 1 / (Product_{k>0} (1 - x^(7*k - 6)) * (1 - x^(7*k - 4)) * (1 - x^(7*k - 3)) * (1 - x^(7*k - 1))). - Michael Somos, Feb 03 2012 G.f.: (Product_{k>0} (1 + x^k)) * (Sum_{k>0} x^(2*k + 2*k^2) / (Product_{i=1..k} (1 - x^(2*i)) * (1 + x^(2*i-1)) * (1 + x^(2*i)))). a(n) ~ 2^(1/4) * cos(3*Pi/14) * exp(2*Pi*sqrt(2*n/21)) / (3^(1/4) * 7^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 13 2015 EXAMPLE G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 8*x^8 + ... G.f. = q^5 + q^47 + q^89 + 2*q^131 + 3*q^173 + 3*q^215 + 5*q^257 + ... MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0, 1, 1, 0, 1][1+irem(d, 7)], d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=1..100); # Alois P. Heinz, Jan 22 2012 MATHEMATICA a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, 1, 0, 1, 1, 0, 1}[[1+Mod[d, 7]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *) a[ n_] := SeriesCoefficient[ 1 / Product[ (1 - x^(7 k - 1)) (1 - x^(7 k - 3)) (1 - x^(7 k - 4)) (1 - x^(7 k - 6)), {k, Ceiling[n/7]}], {x, 0, n}]; (* Michael Somos, Dec 30 2014 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^7] QPochhammer[ x^3, x^7] QPochhammer[ x^4, x^7] QPochhammer[ x^6, x^7] ), {x, 0, n}]; (* Michael Somos, Dec 30 2014 *) PROG (Sage) # See A035937 for GordonsTheorem def A035938_list(len) :  return GordonsTheorem([1, 0, 1, 1, 0, 1, 0], len) A035938_list(40) # Peter Luschny, Jan 22 2012 (PARI) {a(n) = my(A); if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [0, 1, 0, 1, 1, 0, 1][k%7 + 1] * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Feb 03 2012 */ CROSSREFS Cf. A035937, A035939. Sequence in context: A193748 A039852 A241068 * A024503 A061790 A107236 Adjacent sequences:  A035935 A035936 A035937 * A035939 A035940 A035941 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.