login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026300 Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1). 47
1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 9, 1, 5, 14, 25, 30, 21, 1, 6, 20, 44, 69, 76, 51, 1, 7, 27, 70, 133, 189, 196, 127, 1, 8, 35, 104, 230, 392, 518, 512, 323, 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835, 1, 10, 54, 200, 560, 1242, 2235, 3288, 3915, 3610, 2188 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Right-hand columns have g.f. M^k, where M is g.f. of Motzkin numbers.
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A114929, A111808, A114972.
REFERENCES
Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
LINKS
M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
Tewodros Amdeberhan, Moa Apagodu, Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
M. Buckley, R. Garner, S. Lack, R. Street, Skew-monoidal categories and the Catalan simplicial set, arXiv preprint arXiv:1307.0265 [math.CT], 2013.
L. Carlitz, Solution of certain recurrences, SIAM J. Appl. Math., 17 (1969), 251-259.
J. L. Chandon, J. LeMaire and J. Pouget, Denombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
Xiang-Ke Chang, X.-B. Hu, H. Lei, Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2016.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
A. Roshan, P. H. Jones and C. D. Greenman, An Exact, Time-Independent Approach to Clone Size Distributions in Normal and Mutated Cells, arXiv preprint arXiv:1311.5769 [q-bio.QM], 2013.
M. János Uray, A family of barely expansive polynomials, Eötvös Loránd University (Budapest, Hungary, 2020).
Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, PDF.
Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, Combinatorics, Probability and Computing, Volume 24, Special Issue 01,January 2015, pp 354-372.
D. Yaqubi, M. Farrokhi D.G., H. Gahsemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
FORMULA
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2i+n-k)*(binomial(2i+n-k, i) - binomial(2i+n-k, i-1)). - Herbert Kociemba, May 27 2004
T(n,k) = A027907(n,k) - A027907(n,k-2), k<=n.
Sum_{k=0..n} (-1)^k*T(n,k) = A099323(n+1). - Philippe Deléham, Mar 19 2007
Sum_{k=0..n} (T(n,k) mod 2) = A097357(n+1). - Philippe Deléham, Apr 28 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = binomial(n, k)*hypergeom([1/2 - k/2, -k/2], [n - k + 2], 4). - Peter Luschny, Mar 21 2018
T(n,k) = [t^(n-k)] [x^n] 2/(1 - (2*t + 1)*x + sqrt((1 + x)*(1 - 3*x))). - Peter Luschny, Oct 24 2018
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Feb 26 2023
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 2;
[3] 1, 3, 5, 4;
[4] 1, 4, 9, 12, 9;
[5] 1, 5, 14, 25, 30, 21;
[6] 1, 6, 20, 44, 69, 76, 51;
[7] 1, 7, 27, 70, 133, 189, 196, 127;
[8] 1, 8, 35, 104, 230, 392, 518, 512, 323;
[9] 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835.
MAPLE
A026300 := proc(n, k)
add(binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i) -binomial(2*i+n-k, i-1)), i=0..floor(k/2));
end proc: # R. J. Mathar, Jun 30 2013
MATHEMATICA
t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}]; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 03 2011 *)
t[_, 0] = 1; t[n_, 1] := n; t[n_, k_] /; k>n || k<0 = 0; t[n_, n_] := t[n, n] = t[n-1, n-2]+t[n-1, n-1]; t[n_, k_] := t[n, k] = t[n-1, k-2]+t[n-1, k-1]+t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2014 *)
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[1/2 - k/2, -k/2, n - k + 2, 4];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Mar 21 2018 *)
PROG
(Haskell)
a026300 n k = a026300_tabl !! n !! k
a026300_row n = a026300_tabl !! n
a026300_tabl = iterate (\row -> zipWith (+) ([0, 0] ++ row) $
zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Oct 09 2013
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(i=0, k\2, binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i)-binomial(2*i+n-k, i-1))), ", "); ); print(); ); } \\ Michel Marcus, Jul 25 2015
CROSSREFS
Reflected version is in A064189.
Row sums are in A005773.
T(n,n) are Motzkin numbers A001006.
Other columns of T include A002026, A005322, A005323.
Sequence in context: A140717 A257005 A160232 * A099514 A228352 A303911
KEYWORD
nonn,tabl,nice
AUTHOR
EXTENSIONS
Corrected and edited by Johannes W. Meijer, Oct 05 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)