This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024491 a(n) = (1/(4n-1))*C(4n,2n). 2
 -1, 2, 10, 84, 858, 9724, 117572, 1485800, 19389690, 259289580, 3534526380, 48932534040, 686119227300, 9723892802904, 139067101832008, 2004484433302736, 29089272078453818, 424672260824486220, 6232570989814602524, 91901608649243484728, 1360850743459951600780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: A(x) = -sqrt(1/2*(1+sqrt(1-16*x))) With interpolated zeros, this has g.f. -(sqrt(1-4x)+sqrt(1+4x))/2. - Paul Barry, Dec 23 2006 Conjecture: n*(2*n-1)*a(n) -2*(4*n-3)*(4*n-5)*a(n-1)=0. - R. J. Mathar, Nov 13 2012 G.f.: -1/2*G(0), where G(k)= 1 + 1/(1 - 2*sqrt(x)*(4*k-1)/(2*sqrt(x)*(4*k-1) + (2*k+1)/(1 - 1/(1 - sqrt(x)*(4*k+1)/(sqrt(x)*(4*k+1) - (k+1)/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013 EXAMPLE sqrt(1/2*(1+sqrt(1-x))) = 1 - 1/8*x - 5/128*x^2 - 21/1024*x^3 - ... MATHEMATICA Table[1/(4n-1) Binomial[4n, 2n], {n, 0, 20}] (* or *) With[{c=4Sqrt[x]}, CoefficientList[ Series[(-Sqrt[1-c]-Sqrt[1+c])/2, {x, 0, 30}], x]] (* Harvey P. Dale, Mar 10 2013 *) CROSSREFS Cf. A024492. Sequence in context: A121194 A302572 A121516 * A250117 A244627 A113332 Adjacent sequences:  A024488 A024489 A024490 * A024492 A024493 A024494 KEYWORD sign AUTHOR EXTENSIONS More terms from Harvey P. Dale, Mar 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)