login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121516 Number of 3-decomposable trees on 3n nodes. 0
2, 10, 84, 788, 8188, 90110, 1035456, 12269932, 148886048, 1840585914, 23099713808, 293535000452, 3769200628592, 48831588116862, 637501117219024, 8378367468484212, 110760388293651950, 1471854299855109782, 19649723961974718686, 263422552838889748560 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..20.

S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.

FORMULA

Wagner gives a g.f.

MAPLE

Nmax := 30 : nmax := 3*Nmax+1 : a := array(0..nmax) ; Dx := proc(z) global nmax, a ; local resul, i ; resul := 0 ; for i from 1 to (nmax+1)/3 do resul := resul+a[3*i]*z^(3*i) : od : RETURN(resul) ; end: exp1 := proc() global nmax, a ; local m, t ; t := 0 ; for m from 1 to nmax do t := t+3*Dx(x^m)/m ; od: return( taylor(exp(t), x=0, nmax+1) ) ; end: exp2 := proc() global nmax, a ; local m, t ; t := 0 ; for m from 1 to nmax do t := t+(Dx(x^m)+Dx(x^(2*m)))/m ; od: return( taylor(exp(t), x=0, nmax+1) ) ; end: DD := Dx(x)-3*x^3*exp1()/2-x^3*exp2()/2 : for i from 0 to nmax do a[i] := solve(coeftayl(DD, x=0, i), a[i]) ; if i mod 3 = 0 then print(a[i]) ; fi ; end: # R. J. Mathar, Sep 17 2006

CROSSREFS

Sequence in context: A101878 A121194 A302572 * A024491 A250117 A244627

Adjacent sequences:  A121513 A121514 A121515 * A121517 A121518 A121519

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Sep 12 2006

EXTENSIONS

More terms from R. J. Mathar, Sep 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 06:26 EST 2019. Contains 329310 sequences. (Running on oeis4.)