login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024199 a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1). 18
0, 1, 2, 13, 76, 789, 7734, 110937, 1528920, 28018665, 497895210, 11110528485, 241792844580, 6361055257725, 163842638377950, 4964894559637425, 147721447995130800, 5066706567801827025, 171002070002301095250, 6548719685561840296125, 247199273204273879989500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

(2*n + 1)!!/a(n+1), n>=0, is the n-th approximant for William Brouncker's continued fraction for 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))) See the C. Brezinski and J.-P. Delahaye references given under A142969 and A142970, respectively. The double factorials (2*n + 1)!! = A001147(n+1) enter. - Wolfdieter Lang, Oct 06 2008

REFERENCES

A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Peter Luschny, Is the Gamma function misdefined? Hadamard versus Euler - Who found the better Gamma function?

Wikipedia, William Brouncker, 2nd Viscount Brouncker

FORMULA

a(n) = s(1)s(2)...s(n)(1/s(1) - 1/s(2) + ... + c/s(n)) where c=(-1)^(n+1) and s(k) = 2k-1 for k = 1, 2, 3, ... (was previous definition). - Clark Kimberling

a(0) = 0, a(1) = 1, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1). - N. J. A. Sloane, Jul 19 2002

a(n) + A024200(n) = A001147(n) = (2n-1)!!. - Max Alekseyev, Sep 23 2007

a(n)/A024200(n) -> Pi/(4-Pi) as n -> oo. - Max Alekseyev, Sep 23 2007

From Wolfdieter Lang, Oct 06 2008: (Start)

E.g.f. for a(n+1), n>=0: (sqrt(1-2*x)+arcsin(2*x)*sqrt(1+2*x)/2)/((1-4*x^2)^(1/2)*(1-2*x)). From the recurrence, solving (1-4*x^2)y''(x)-2*(8*x+1)*y'(x)-9*y=0 with inputs y(0)=1, y'(0)=2.

a(n+1) = A003148(n) + A143165(n), n>=0 (from the two terms of the e.g.f.). (End)

From Johannes W. Meijer, Nov 12 2009: (Start)

a(n) = (-1)^(n-1)*(2*n-3)!! + (2*n-1)*a(n-1) with a(0) = 0.

a(n) = (2*n-1)!!*sum((-1)^(k)/(2*k+1), k=0..n-1)

(End)

E.g.f.: Pi/4/sqrt(1-2*x) - 1/2*log(2*x+sqrt(4*x^2-1))/sqrt(2*x-1). - Vaclav Kotesovec, Mar 18 2014

a(n) ~ Pi * 2^(n-3/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 18 2014

a(n) = (2*H(n+1/2)-Gamma(n+1/2))*2^(n-2)*sqrt(Pi) with H(x) the Hadamard factorial (see the link section). - Cyril Damamme, Jul 19 2015

a(n) = A135457(n) - (-1)^n A001147(n-1). - Cyril Damamme, Jul 19 2015

a(n) = (Pi + (-1)^n*(Psi(n/2 + 1/4) - Psi(n/2 + 3/4)))*Gamma(n+1/2)*2^(n-2)/sqrt(Pi). - Robert Israel, Jul 20 2015

a(n) = A167576(n) - A135457(n). - Cyril Damamme, Jul 22 2015

a(n)/A001147(n) -> Pi/4 as n -> oo. - Daniel Suteu, Jul 21 2016

From Peter Bala, Nov 15 2016: (Start)

Conjecture: a(n) = 1/2*Sum_{k = 0..2*n-1} (-1)^(n-k+1)*k!*(2*n - 2*k - 3)!!, where the double factorial of an odd integer (positive or negative) may be defined in terms of the gamma function as (2*N - 1)!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).

E.g.f. 1/2*arcsin(2*x)/sqrt(1 - 2*x) = x + 2*x^2/2! + 13*x^3/3! + 76*x^4/4! + .... (End)

EXAMPLE

a(3) = (2*3 - 1)!! * Sum_{k=0..2} (-1)^k/(2k + 1) = 5!! * (1/(2*0 + 1) - 1/(2*1 + 1) + 1/(2*2 + 1)) = 5*3*1*(1/1 - 1/3 + 1/5) = 15 - 5 + 3 = 13. Notice that the first factor always cancels the common denominator of the sum. - Michael B. Porter, Jul 22 2016

MAPLE

a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 else 2*a(n-1)+(2*n-3)^2* a(n-2) fi end: seq(a(n), n=0..20); # Peter Luschny, Nov 16 2016 after N. J. A. Sloane

MATHEMATICA

f[k_] := (2 k - 1) (-1)^(k + 1)

t[n_] := Table[f[k], {k, 1, n}]

a[n_] := SymmetricPolynomial[n - 1, t[n]]

Table[a[n], {n, 1, 22}]    (* A024199 signed *)

(* Clark Kimberling, Dec 30 2011 *)

RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1], a[0] == 0, a[1] == 1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Mar 18 2014 *)

CoefficientList[Series[Pi/4/Sqrt[1-2*x] - 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)

PROG

(MAGMA) [0] cat [ n le 2 select (n) else 2*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 17 2015

CROSSREFS

Cf. A004041, A000407.

From Johannes W. Meijer, Nov 12 2009: (Start)

Cf. A007509 and A025547.

Equals first column of A167584.

Equals row sums of A167591.

Equals first right hand column of A167594.

(End)

Cf. A167576 and A135457.

Sequence in context: A192700 A007509 A077413 * A037523 A037732 A090187

Adjacent sequences:  A024196 A024197 A024198 * A024200 A024201 A024202

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

Edited by N. J. A. Sloane, Jul 19 2002

New name by Cyril Damamme, Jul 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.