login
A143165
Expansion of the exponential generating function arcsin(2*x)/(2*(1-2*x)^(3/2)).
2
0, 1, 6, 49, 468, 5469, 73362, 1138005, 19737000, 383284665, 8163588510, 190709475705, 4818820261500, 131650382056725, 3850053335966250, 120466494638624925, 4002649276431128400, 141156781966460192625, 5252646220794868029750, 206149276075766825426625
OFFSET
0,3
COMMENTS
Used in A024199(n+1) = A003148(n) + a(n).
Binomial convolution of [0,1^2,0,2^2,0,...,0,((2*k)!/k!)^2,0,...] (e.g.f. arcsin(2*x)/2) with the double factorials A001147.
LINKS
FORMULA
E.g.f.: arcsin(2*x)/(2*(1-2*x)^(3/2)).
a(n) = sum(binomial(n,2*k+1)*(4^k)*((2*k-1)!!)^2*(2*(n-2*k)-1)!!,k=0..floor(n/2)), with (2*n-1)!!:= A001147(n) (double factorials).
a(n) ~ Pi * 2^(n-1/2) * n^(n+1) / exp(n) * (1 - sqrt(2/(Pi*n))). - Vaclav Kotesovec, Mar 18 2014
2*(n+1)*(3+2*n)^2*a(n)-(4*n^2+8*n+1)*a(n+1)-(2*(n+4))*a(n+2)+a(n+3)=0. - Robert Israel, Feb 07 2018
EXAMPLE
a(3) + A003148(3) = 49 + 27 = 76 = A024199(4).
MAPLE
f:= gfun:-rectoproc({2*(n+1)*(3+2*n)^2*a(n)-(4*n^2+8*n+1)*a(n+1)-(2*(n+4))*a(n+2)+a(n+3)=0, a(0)=0, a(1)=1, a(2)=6}, a(n), remember):
map(f, [$0 .. 30]); # Robert Israel, Feb 07 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[ArcSin[2x]/(2(1-2x)^(3/2)), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 18 2019 *)
PROG
(PARI) x = 'x + O('x^40); concat(0, Vec(serlaplace(asin(2*x)/(2*(1-2*x)^(3/2))))) \\ Michel Marcus, Jun 18 2017
CROSSREFS
Sequence in context: A371406 A365193 A365188 * A008786 A274278 A286799
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 15 2008
STATUS
approved