This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024196 a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers. 6
 3, 23, 86, 230, 505, 973, 1708, 2796, 4335, 6435, 9218, 12818, 17381, 23065, 30040, 38488, 48603, 60591, 74670, 91070, 110033, 131813, 156676, 184900, 216775, 252603, 292698, 337386, 387005, 441905, 502448, 569008, 641971, 721735, 808710, 903318 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is related to A016061 by the transform a(n) = n*A016061(n)-sum(A016061(i), i=0..n-1). - Bruno Berselli, Mar 13 2012 Partials sums of A099721. - Philippe Deléham, May 07 2012 LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 Index to sequences with linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = n*(n+1)*(3*n^2+5*n+1)/6. G.f.: x*(3+8*x+x^2)/(1-x)^5. - Bruno Berselli, Mar 13 2012 a(n) = sum((n+1-i)*((n+1)^2-i), i=1..n). - Bruno Berselli, Mar 13 2012 a(n) - a(n-1) = A099721(n). - Philippe Deléham, May 07 2012 EXAMPLE a(8) = 8*80+7*79+6*78+5*77+4*76+3*75+2*74+1*73 = 2796. - Bruno Berselli, Mar 13 2012 MATHEMATICA f[k_] := 2 k - 1; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[2, t[n]] Table[a[n], {n, 2, 50}]  (* A024196 *) (* Clark Kimberling, Dec 31 2011 *) CROSSREFS Contribution from Johannes W. Meijer, Jun 08 2009: (Start) Equals third right hand column of A028338 triangle. Equals third left hand column of A109692 triangle. Equals third right hand column of A161198 triangle divided by 2^m. (End) Cf. A016061. Sequence in context: A201482 A032017 A197453 * A196339 A196318 A213846 Adjacent sequences:  A024193 A024194 A024195 * A024197 A024198 A024199 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .