OFFSET
1,3
COMMENTS
In other words, numbers represented by quadratic form with Gram matrix [1,0; 0,5].
x^2 + 5 y^2 has discriminant -20.
A positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/10) odd, and the number of prime divisors p == 3 or 7 (mod 20) of n with ord_p(n) odd has the same parity with ord_2(n). - Zhi-Wei Sun, Mar 24 2018
REFERENCES
H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.
David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..13859
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - Michael Somos, Oct 21 2006
MAPLE
select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # Robert Israel, May 11 2016
MATHEMATICA
formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
mx = 300;
limx = Sqrt[mx]; limy = Sqrt[mx/5];
Select[
Union[
Flatten[
Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}]
]
], # <= mx &
] (* T. D. Noe, Sep 20 2011 *)
PROG
(Magma) [n: n in [0..216] | NormEquation(5, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Sep 20 2012
STATUS
approved