login
Numbers of form x^2 + 5 y^2.
20

%I #68 Sep 08 2022 08:44:45

%S 0,1,4,5,6,9,14,16,20,21,24,25,29,30,36,41,45,46,49,54,56,61,64,69,70,

%T 80,81,84,86,89,94,96,100,101,105,109,116,120,121,125,126,129,134,141,

%U 144,145,149,150,161,164,166,169,174,180,181,184,189,196,201,205,206,214,216

%N Numbers of form x^2 + 5 y^2.

%C In other words, numbers represented by quadratic form with Gram matrix [1,0; 0,5].

%C x^2 + 5 y^2 has discriminant -20.

%C A positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/10) odd, and the number of prime divisors p == 3 or 7 (mod 20) of n with ord_p(n) odd has the same parity with ord_2(n). - _Zhi-Wei Sun_, Mar 24 2018

%D H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.

%D David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.

%H N. J. A. Sloane, <a href="/A020669/b020669.txt">Table of n, a(n) for n = 1..13859</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - _Michael Somos_, Oct 21 2006

%p select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # _Robert Israel_, May 11 2016

%t formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* _Jean-François Alcover_, Sep 20 2011 *)

%t mx = 300;

%t limx = Sqrt[mx]; limy = Sqrt[mx/5];

%t Select[

%t Union[

%t Flatten[

%t Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}]

%t ]

%t ], # <= mx &

%t ] (* _T. D. Noe_, Sep 20 2011 *)

%o (Magma) [n: n in [0..216] | NormEquation(5, n) eq true]; // _Arkadiusz Wesolowski_, May 11 2016

%Y Cf. A033205, A106865, A154778, A216815, A216816.

%Y For primes see A033205.

%Y For the properly represented numbers see A344231.

%K easy,nonn

%O 1,3

%A _David W. Wilson_

%E Entry revised by _N. J. A. Sloane_, Sep 20 2012