login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028586 Theta series of lattice with Gram matrix [2 1; 1 3]. 4
1, 0, 2, 4, 0, 0, 0, 4, 2, 0, 2, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 8, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 0, 0, 0, 4, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 6, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

The number of integer solutions (x, y) to 2*x^2 + 2*x*y + 3*y^2 = n, discriminant -20. - Ray Chandler, Jul 12 2014

LINKS

John Cannon, Table of n, a(n) for n = 0..10000

A. Berkovich and H. Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, page 8 equation (3.18)

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

G.f.: Sum_{n,m} x^(2*n^2 + 2*m*n + 3*m^2). - Michael Somos, Jan 31 2011

Expansion of (theta_3(z)*theta_3(5z)+theta_2(z)*theta_2(5z)).

Expansion of phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4) * psi(q^20) in powers of q where phi(q),psi(q) are Ramanujan theta functions. - Michael Somos, Aug 13 2006

If p is prime then a(p) is nonzero iff p is in A106865.

0=a(n)a(2n) and 2*A035170(n)=a(n)+a(2n) if n>0. - Michael Somos, Oct 21 2006

EXAMPLE

1 + 2*q^2 + 4*q^3 + 4*q^7 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^15 + 6*q^18 + 4*q^23 + 8*q^27 + 4*q^28 + 2*q^32 + 4*q^35 + 2*q^40 + 8*q^42 + 4*q^43 + 4*q^47 + ...

MATHEMATICA

terms = 104; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^2]*phi[q^10] + 4*q^3*psi[q^4]*psi[q^20] + O[q]^(terms+1); CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)

PROG

(PARI) {a(n) = if( n<1, n==0, qfrep([2, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Aug 13 2006 */

CROSSREFS

Sequence in context: A138758 A107501 A126732 * A253179 A300723 A263788

Adjacent sequences:  A028583 A028584 A028585 * A028587 A028588 A028589

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 02:44 EDT 2019. Contains 326169 sequences. (Running on oeis4.)