login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344231 Positive integers k properly represented by the positive definite binary quadratic form X^2 + 5*Y^2 = k, in increasing order. 5
1, 5, 6, 9, 14, 21, 29, 30, 41, 45, 46, 49, 54, 61, 69, 70, 81, 86, 89, 94, 101, 105, 109, 126, 129, 134, 141, 145, 149, 161, 166, 174, 181, 189, 201, 205, 206, 214, 229, 230, 241, 245, 246, 249, 254, 261, 269, 270, 281, 294, 301, 305, 309, 321, 326, 329, 334, 345, 349, 366, 369, 381, 389, 401, 405 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is one of the bisections of sequence A343238. The other sequence is A344232.
This is a proper subsequence of A020669.
The primes in this sequence are given in A033205.
Discriminant Disc = -20 = -4*5. Class number h(-20) = A000003(5) = 2. The reduced primitive forms representing the two proper (determinant = +1) equivalence classes are the present principal form F1 = [1, 0, 5] and F2 = [2, 2, 3] treated in A344232.
A positive integer k is properly represented by some primitive form of Disc = -20 if and only if the congruence s^2 + 20 == 0 (mod 4*k) has a solution. See, e.g., Buell Proposition 41, p. 50, or Scholz-Schoeneberg Satz 74, p. 105. That is, x^2 + 5 == 0 (mod k), with s = 2*x. For the representative solutions x from {0, 1, ..., k-1}, with k from A343238, see A343239. These solutions x determine the so-called representative parallel primitive forms (rpapfs) [k, 2*x, (x^2 + 5)/k] representing k. They are properly equivalent (via so called R(t)-transformations) to one of the reduced forms F1 or F2. (See also W. Lang's links in A225953 and A324251, but there indefinite forms are considered.)
In order to find out which k from A343238 is represented either by form F1 or F2 the two generic multiplicative characters of Disc = -20, namely Legendre(k|p), with the odd prime p = 5 which divides Disc = -20, and Jacobi(-1|k) can be used. See Buell, pp. 51-52. They lead to the two classes of genera of Disc -20.
The present genus I, the principal one, has for odd primes p, not 5, the values Legendre(p|5) = Legendre(5|p) = +1 and Jacobi(-1|p) = Legendre(-1|p) = +1, leading for odd primes not equal to 5 to A033205. The prime 2 is not represented. The prime 5 is trivially represented. For the other genus II these two characters have values -1. There prime 2 is represented.
For composite k the prime number factorization is used, and for powers of primes the lifting theorem is employed (see, e.g., Apostol, p. 121, Theorem 5.30). The solution for prime 2 represented by form F2 = [2, 2, 3] (from the other genus II) is not liftable to powers of 2. The solution for prime 5 is also not liftable (proof by induction). The solutions of the other primes from A033205 and A106865 are uniquely liftable to powers of these primes. See A343238 for all properly represented k for Disc = -20.
For the present genus I the properly represented integers k are given by 2^a*5^b*Product_{j=1..PI} (pI_j)^(eI(j))*Product_{k=1..PII} (pII_k)^(eII(k)), with a and b from {0, 1} but if PI = PII = 0 (empty products are 1) then a = b = 0 giving a(1) = 1. The odd primes pI_j are from A033205 (== {1, 9} (mod 20)), the primes pII_k are from the odd primes of A106865 (== {3, 7}(mod 20)). The exponents of the second product are restricted: if a = 1 then PII >= 1 and Sum_{k=1..PII} eII(k) is odd. If a = 0 then PII >= 0, and if PII >= 1 then this sum is even.
Neighboring numbers k (twins) begin: [5, 6], [29, 30], [45, 46], [69, 70], [205, 206], [229, 230], [245, 246], [269, 270], [405, 406], ...
For the solutions (X, Y) of F2 = [1, 0, 5] properly representing k = a(n) see A344233.
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp 121 - 122.
D. A. Buell, Binary Quadratic Forms, Springer, 1989.
A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.
LINKS
CROSSREFS
Sequence in context: A218735 A301658 A286338 * A117951 A328115 A327975
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 10 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 13:38 EDT 2024. Contains 371914 sequences. (Running on oeis4.)