login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020229
Strong pseudoprimes to base 3.
25
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, 105163, 111361, 112141, 148417, 152551, 182527, 188191, 211411, 218791, 221761, 226801
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..24767 (first 752 terms from R. J. Mathar)
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792
Eric Weisstein's World of Mathematics, Strong Pseudoprime
MATHEMATICA
sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A020229 = {}; lst = {}; k = 3; While[k < 500000, If[sppQ[k, 3], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
PROG
(PARI) is_A020229(n, b=3)={ bittest(n, 0) || return; ispseudoprime(n) && return; my(d=(n-1)>>valuation(n-1, 2)); Mod(b, n)^d==1 || until(n-1<=d*=2, Mod(b, n)^d+1 || return(1))} \\ M. F. Hasler, Jul 19 2012
CROSSREFS
KEYWORD
nonn
STATUS
approved