login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020229 Strong pseudoprimes to base 3. 14
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, 105163, 111361, 112141, 148417, 152551, 182527, 188191, 211411, 218791, 221761, 226801 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..752

Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792

Index entries for sequences related to pseudoprimes

Eric Weisstein's World of Mathematics, Strong Pseudoprime

MATHEMATICA

sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A020229 = {}; lst = {}; k = 3; While[k < 500000, If[sppQ[k, 3], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-Fran├žois Alcover, Oct 20 2011, after R. J. Mathar *)

PROG

(PARI) is_A020229(n, b=3)={ bittest(n, 0)|return; ispseudoprime(n)&return; my(d=(n-1)>>valuation(n-1, 2)); Mod(b, n)^d==1 || until(n-1<=d*=2, Mod(b, n)^d+1 || return(1))}  \\  - M. F. Hasler, Jul 19 2012

CROSSREFS

Cf. A001262, A072276, A056915, A074773.

Sequence in context: A014749 A262051 A048950 * A141350 A235408 A190877

Adjacent sequences:  A020226 A020227 A020228 * A020230 A020231 A020232

KEYWORD

nonn,changed

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 14:26 EST 2016. Contains 278971 sequences.