login
A361703
Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.
3
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
OFFSET
0,6
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/5)} (4*k)!/k!^4 * binomial(5*k,4*k) * binomial(n,5*k) = Sum_{k=0..floor(n/5)} (5*k)!/k!^5 * binomial(n,5*k).
a(n) ~ 9 * 6^n / (sqrt(5) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 25 2023
PROG
(PARI) a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 21 2023
STATUS
approved