login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005935 Pseudoprimes to base 3.
(Formerly M5362)
26
91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Theorem: If q>3 and both numbers q and (2q-1) are primes then n=q*(2q-1) is a pseudoprime to base 3 (i.e. n is in the sequence). So for n>2, A005382(n)*(2*A005382(n)-1) is in the sequence (see Comments lines for the sequence A122780). 91,703,1891,2701,12403,18721,38503,49141... are such terms. This sequence is a subsequence of A122780. - Farideh Firoozbakht, Sep 13 2006

Composite numbers n such that 3^(n-1) == 1 (mod n).

Theorem (R. Steuerwald, 1948): if n is a pseudoprime to base b and gcd(n,b-1)=1, then (b^n-1)/(b-1) is a pseudoprime to base b. Especially, if n is a pseudoprime to base 3, then (3^n-1)/2 is a pseudoprime to base 3. - Thomas Ordowski, Apr 06 2016

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 91, p. 33, Ellipses, Paris 2008.

R. K. Guy, Unsolved Problems in Number Theory, A12.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. Steuerwald, Über die Kongruenz a^(n-1) == 1 (mod n). Sitzungsber. math.-naturw. Kl. Bayer. Akad. Wiss. München, 1948, pp. 69-70.

LINKS

R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..102839 (terms a(1)-a(798) from R. J. Mathar, a(799)-a(1000) from T. D. Noe)

J. Bernheiden, Pseudoprimes (Text in German)

F. Richman, Primality testing with Fermat's little theorem

Eric Weisstein's World of Mathematics, Fermat Pseudoprime

Index entries for sequences related to pseudoprimes

MATHEMATICA

base = 3; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)

PROG

(PARI) is_A005935(n)={Mod(3, n)^(n-1)==1 & !ispseudoprime(n) & n>1}  \\ M. F. Hasler, Jul 19 2012

CROSSREFS

Pseudoprimes to other bases: A001567 (2), A005936 (5), A005937 (6), A005938 (7), A005939 (10).

Cf. A005382, A122780.

Sequence in context: A236845 A157345 A092125 * A020307 A020235 A046427

Adjacent sequences:  A005932 A005933 A005934 * A005936 A005937 A005938

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from David W. Wilson, Aug 15 1996

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 02:36 EST 2016. Contains 278959 sequences.