login
A017476
a(n) = (11*n + 7)^4.
12
2401, 104976, 707281, 2560000, 6765201, 14776336, 28398241, 49787136, 81450625, 126247696, 187388721, 268435456, 373301041, 506250000, 671898241, 875213056, 1121513121, 1416468496, 1766100625, 2176782336, 2655237841, 3208542736, 3844124001, 4569760000
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=2401, a(1)=104976, a(2)=707281, a(3)=2560000, a(4)=6765201. - Harvey P. Dale, Oct 21 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (2401 +92971*x +206411*x^2 +49345*x^3 +256*x^4)/(1-x)^5.
E.g.f.: (2401 +102575*x +249865*x^2 +125114*x^3 +14641 x^4)*exp(x). (End)
MAPLE
seq((11*n+7)^4, n=0..30); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[0, 30]+7)^4 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {2401, 104976, 707281, 2560000, 6765201}, 30] (* Harvey P. Dale, Oct 21 2015 *)
PROG
(Magma) [(11*n+7)^4: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(30, n, (11*n-4)^4) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^4 for n in (0..30)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..30], n-> (11*n+7)^4); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), this sequence (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A017152 A017248 A017356 * A017608 A061210 A226092
KEYWORD
nonn,easy
STATUS
approved