login
A017480
a(n) = (11*n + 7)^8.
12
5764801, 11019960576, 500246412961, 6553600000000, 45767944570401, 218340105584896, 806460091894081, 2478758911082496, 6634204312890625, 15938480745308416, 35114532758015841, 72057594037927936, 139353667211683681, 256289062500000000, 451447246258894081
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (5764801 +10968077367*x +401274300613*x^2 +2447616620803*x^3 + 3869465113539*x^4 +1725294430213*x^5 +185763408247*x^6 +2562300801*x^7 + 65536*x^8)/(1-x)^9.
E.g.f.: (5764801 +11014195775*x +239106128305*x^2 +847652479674*x^3 + 937956207111*x^4 +417408438678*x^5 +82366957134*x^6 +7093330244*x^7 + 214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+7)^8, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[0, 20]+7)^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {5764801, 11019960576, 500246412961, 6553600000000, 45767944570401, 218340105584896, 806460091894081, 2478758911082496, 6634204312890625}, 20] (* Harvey P. Dale, Mar 30 2016 *)
PROG
(Magma) [(11*n+7)^8: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(20, n, (11*n-4)^8) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^8 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+7)^8); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), this sequence (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A017156 A017252 A017360 * A017612 A235983 A203931
KEYWORD
nonn,easy
STATUS
approved