OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (343 + 4460*x + 3119*x^2 + 64*x^3)/(1-x)^4. - R. J. Mathar, Jun 24 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=343, a(1)=5832, a(2)=24389, a(3)=64000. - Harvey P. Dale, Oct 18 2014
E.g.f.: (343 +5489*x +6534*x^2 +1331*x^3)*exp(x). - G. C. Greubel, Sep 19 2019
MAPLE
seq((11*n+7)^3, n=0..40); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[0, 40]+7)^3 (* or *) LinearRecurrence[{4, -6, 4, -1}, {343, 5832, 24389, 64000}, 40] (* Harvey P. Dale, Oct 18 2014 *)
PROG
(Magma) [(11*n+7)^3: n in [0..40]]; // Vincenzo Librandi, Sep 04 2011
(Maxima) makelist((11*n+7)^3, n, 0, 40); /* Martin Ettl, Oct 21 2012 */
(PARI) a(n) = (11*n+7)^3; \\ Altug Alkan, Sep 08 2018
(Sage) [(11*n+7)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..40], n-> (11*n+7)^3); # G. C. Greubel, Sep 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved