login
A017475
a(n) = (11*n + 7)^3.
12
343, 5832, 24389, 64000, 132651, 238328, 389017, 592704, 857375, 1191016, 1601613, 2097152, 2685619, 3375000, 4173281, 5088448, 6128487, 7301384, 8615125, 10077696, 11697083, 13481272, 15438249, 17576000, 19902511, 22425768, 25153757, 28094464, 31255875, 34645976, 38272753, 42144192
OFFSET
0,1
FORMULA
G.f.: (343 + 4460*x + 3119*x^2 + 64*x^3)/(1-x)^4. - R. J. Mathar, Jun 24 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=343, a(1)=5832, a(2)=24389, a(3)=64000. - Harvey P. Dale, Oct 18 2014
E.g.f.: (343 +5489*x +6534*x^2 +1331*x^3)*exp(x). - G. C. Greubel, Sep 19 2019
MAPLE
seq((11*n+7)^3, n=0..40); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[0, 40]+7)^3 (* or *) LinearRecurrence[{4, -6, 4, -1}, {343, 5832, 24389, 64000}, 40] (* Harvey P. Dale, Oct 18 2014 *)
PROG
(Magma) [(11*n+7)^3: n in [0..40]]; // Vincenzo Librandi, Sep 04 2011
(Maxima) makelist((11*n+7)^3, n, 0, 40); /* Martin Ettl, Oct 21 2012 */
(PARI) a(n) = (11*n+7)^3; \\ Altug Alkan, Sep 08 2018
(Sage) [(11*n+7)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..40], n-> (11*n+7)^3); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), this sequence (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A017247 A017355 A167727 * A017607 A277636 A224427
KEYWORD
nonn,easy
STATUS
approved