OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0) = 16807, a(1) = 1889568, a(2) = 20511149, a(3) = 102400000, a(4) = 345025251, a(5) = 916132832. - Harvey P. Dale, Jan 16 2013
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (16807 +1788726*x +9425846*x^2 +7340486*x^3 +753231*x^4 +1024*x^5 )/(1-x)^6.
E.g.f.: (16807 +1872761*x +8374410*x^2 +7753075*x^3 +2122945*x^4 +161051 *x^5)*exp(x). (End)
MAPLE
seq((11*n+7)^5, n=0..30); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11 * Range[0, 30] + 7)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {16807, 1889568, 20511149, 102400000, 345025251, 916132832}, 30] (* Harvey P. Dale, Jan 16 2013 *)
PROG
(Magma) [(11*n+7)^5: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(30, n, (11*n-4)^5) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^5 for n in (0..30)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..30], n-> (11*n+7)^5); # G. C. Greubel, Sep 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved