login
A017477
a(n) = (11*n + 7)^5.
12
16807, 1889568, 20511149, 102400000, 345025251, 916132832, 2073071593, 4182119424, 7737809375, 13382255776, 21924480357, 34359738368, 51888844699, 75937500000, 108175616801, 150536645632, 205236901143
OFFSET
0,1
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0) = 16807, a(1) = 1889568, a(2) = 20511149, a(3) = 102400000, a(4) = 345025251, a(5) = 916132832. - Harvey P. Dale, Jan 16 2013
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (16807 +1788726*x +9425846*x^2 +7340486*x^3 +753231*x^4 +1024*x^5 )/(1-x)^6.
E.g.f.: (16807 +1872761*x +8374410*x^2 +7753075*x^3 +2122945*x^4 +161051 *x^5)*exp(x). (End)
MAPLE
seq((11*n+7)^5, n=0..30); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11 * Range[0, 30] + 7)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {16807, 1889568, 20511149, 102400000, 345025251, 916132832}, 30] (* Harvey P. Dale, Jan 16 2013 *)
PROG
(Magma) [(11*n+7)^5: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(30, n, (11*n-4)^5) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^5 for n in (0..30)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..30], n-> (11*n+7)^5); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), this sequence (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A265479 A017249 A017357 * A017609 A096550 A184466
KEYWORD
nonn,easy
STATUS
approved