login
A017484
a(n) = (11*n + 7)^12.
12
13841287201, 1156831381426176, 353814783205469041, 16777216000000000000, 309629344375621415601, 3226266762397899821056, 22902048046490258711521, 123410307017276135571456, 540360087662636962890625, 2012196471835550329409536, 6580067382037190942729361
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (13841287201 +1156651444692563*x +338777054867330431*x^2 + 12267852707472004709*x^3 +118792245587080463178*x^4 + 409344222142040360670*x^5 +564873972371695167390*x^6 + 320832301424673327498*x^7 +71415318201137477061*x^8 + 5352495778795351967*x^9 +93742255577726899*x^10 129746119786817*x^11 - 16777216*x^12)/(1-x)^13.
E.g.f.: (13841287201 +1156817540138975*x + 175750567141951945*x^2 + 2619873688447764034*x^3 +10193280906798742181*x^4 +15352998640256699136 *x^5 + 10914782775709466368*x^6 +4085382181827774828*x^7 + 853384566008402142*x^8 +101542034509085885*x^9 +6753041931691759*x^10 + 231102453194910*x^11 +3138428376721*x^12)*exp(x). (End)
MAPLE
seq((11*n+7)^12, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -4)^12 (* G. C. Greubel, Sep 19 2019 *)
PROG
(Magma) [(11*n+7)^12: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
(Maxima) makelist((11*n+7)^12, n, 0, 20); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(20, n, (11*n-4)^12) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+7)^12); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), this sequence (m=12)
Sequence in context: A017160 A017256 A017364 * A017616 A304234 A134298
KEYWORD
nonn,easy
STATUS
approved