OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (13841287201 +1156651444692563*x +338777054867330431*x^2 + 12267852707472004709*x^3 +118792245587080463178*x^4 + 409344222142040360670*x^5 +564873972371695167390*x^6 + 320832301424673327498*x^7 +71415318201137477061*x^8 + 5352495778795351967*x^9 +93742255577726899*x^10 129746119786817*x^11 - 16777216*x^12)/(1-x)^13.
E.g.f.: (13841287201 +1156817540138975*x + 175750567141951945*x^2 + 2619873688447764034*x^3 +10193280906798742181*x^4 +15352998640256699136 *x^5 + 10914782775709466368*x^6 +4085382181827774828*x^7 + 853384566008402142*x^8 +101542034509085885*x^9 +6753041931691759*x^10 + 231102453194910*x^11 +3138428376721*x^12)*exp(x). (End)
MAPLE
seq((11*n+7)^12, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -4)^12 (* G. C. Greubel, Sep 19 2019 *)
PROG
(Magma) [(11*n+7)^12: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
(Maxima) makelist((11*n+7)^12, n, 0, 20); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(20, n, (11*n-4)^12) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+7)^12); # G. C. Greubel, Sep 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved