login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016790
a(n) = (3n+2)^2.
17
1, 4, 25, 64, 121, 196, 289, 400, 529, 676, 841, 1024, 1225, 1444, 1681, 1936, 2209, 2500, 2809, 3136, 3481, 3844, 4225, 4624, 5041, 5476, 5929, 6400, 6889, 7396, 7921, 8464, 9025, 9604, 10201, 10816, 11449, 12100, 12769, 13456, 14161, 14884, 15625, 16384
OFFSET
-1,2
COMMENTS
If Y is a fixed 2-subset of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
The digit root of the sequence, i.e., A010888(a(n)) for n>=0, is a repeating pattern of {4,7,1}, cf. A100402. - Ram Shankar, Apr 14 2015
With a different offset, partial sums of A298035. - N. J. A. Sloane, Jan 22 2018
FORMULA
a(n) = A016958(n)/4. - Zerinvary Lajos, Jun 30 2009
From Wesley Ivan Hurt, Apr 14 2015: (Start)
G.f.: (4+13*x+x^2)/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). (End)
a(n) = a(n-1)+3*(6*n+1). - Miquel Cerda, Oct 25 2016
a(n) = A016766(n+1)-A016969(n). - Miquel Cerda, Oct 26 2016
Sum_{n>=0} 1/a(n) = A294967. - Amiram Eldar, Nov 12 2020
MAPLE
A016790:=n->(3*n+2)^2: seq(A016790(n), n=0..50); # Wesley Ivan Hurt, Apr 14 2015
MATHEMATICA
(3 Range[0, 50] + 2)^2 (* Wesley Ivan Hurt, Apr 14 2015 *)
PROG
(Magma) [(3*n+2)^2: n in [0..50]]; // Vincenzo Librandi, May 06 2011
(PARI) vector(50, n, n--; (3*n+2)^2) \\ Derek Orr, Apr 14 2015
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Notation in formula cleaned up by R. J. Mathar, Aug 05 2010
Added a(-1)=1 and fixed b-file. Note: this sequence should really be changed to a(n) = (3n-1)^2 and have offset 0. - N. J. A. Sloane, Jan 22 2018
STATUS
approved