OFFSET
-1,2
COMMENTS
If Y is a fixed 2-subset of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
The digit root of the sequence, i.e., A010888(a(n)) for n>=0, is a repeating pattern of {4,7,1}, cf. A100402. - Ram Shankar, Apr 14 2015
With a different offset, partial sums of A298035. - N. J. A. Sloane, Jan 22 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = -1..3000
Milan Janjic, Two Enumerative Functions
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = A016958(n)/4. - Zerinvary Lajos, Jun 30 2009
From Wesley Ivan Hurt, Apr 14 2015: (Start)
G.f.: (4+13*x+x^2)/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). (End)
a(n) = a(n-1)+3*(6*n+1). - Miquel Cerda, Oct 25 2016
Sum_{n>=0} 1/a(n) = A294967. - Amiram Eldar, Nov 12 2020
MAPLE
MATHEMATICA
(3 Range[0, 50] + 2)^2 (* Wesley Ivan Hurt, Apr 14 2015 *)
PROG
(Magma) [(3*n+2)^2: n in [0..50]]; // Vincenzo Librandi, May 06 2011
(PARI) vector(50, n, n--; (3*n+2)^2) \\ Derek Orr, Apr 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Notation in formula cleaned up by R. J. Mathar, Aug 05 2010
Added a(-1)=1 and fixed b-file. Note: this sequence should really be changed to a(n) = (3n-1)^2 and have offset 0. - N. J. A. Sloane, Jan 22 2018
STATUS
approved