OFFSET
1,1
COMMENTS
Some other terms: 50714860157241037295616, 188031682201497672618081, 4817904819828488880132096, 13214788658781797667045376, 45587487211290846582931833112449, 112410921330388974282595778471993, 282429536481000000000000000000000000, 21936950640377856000000000000000000000. - Chai Wah Wu, Jan 30 2024
EXAMPLE
The terms 4, 25, 64, 196, and 289 are obtained for r = 2:
4^(1/2) = sqrt(4) = 2 = digsum(4) - 2;
25^(1/2) = sqrt(25) = 5 = digsum(25) - 2 = 7 - 2;
64^(1/2) = sqrt(64) = 8 = digsum(64) - 2 = 10 - 2;
196^(1/2) = sqrt(196) = 14 = digsum(196) - 2 = 16 - 2;
289^(1/2) = sqrt(289) = 17 = digsum(289) - 2 = 19 - 2.
The terms 125, 216, 343, 2744, 3375, and 4096 are obtained for r = 3:
125^(1/3) = 5 = digsum(125) - 3 = 8 - 3;
216^(1/3) = 6 = digsum(216) - 3 = 9 - 3;
343^(1/3) = 7 = digsum(343) - 3 = 10 - 7;
2744^(1/3) = 14 = digsum(2744) - 3 = 17 - 3;
3375^(1/3) = 15 = digsum(3375) - 3 = 18 - 3;
4096^(1/3) = 16 = digsum(4096) - 3 = 19 - 3.
The term 3518743761 is obtained for r = 6:
3518743761^(1/6) = 39 = digsum(3518743761) - 6 = 45 - 6.
MATHEMATICA
min = 0; max = 10^8; list=Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}]; (* A001597 *)
a = {}; For[k = 1, k <=Length[list], k++, For[r = 2, r <= Ceiling[Log2[Part[list, k]]], r++, If[Part[list, k]^(1/r) == Total[IntegerDigits[Part[list, k]]]-r, AppendTo[a, Part[list, k]]]]]; a
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Stefano Spezia, Jan 23 2024
EXTENSIONS
a(13)-a(14) from Chai Wah Wu, Jan 30 2024
STATUS
approved