login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015532 a(n) = 4*a(n-1) + 7*a(n-2). 12
0, 1, 4, 23, 120, 641, 3404, 18103, 96240, 511681, 2720404, 14463383, 76896360, 408829121, 2173591004, 11556167863, 61439808480, 326652408961, 1736688295204, 9233320043543, 49090098240600, 260993633267201, 1387605220753004, 7377376315882423 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Pisano period lengths: 1, 2, 8, 4, 4, 8, 3, 4, 24, 4, 110, 8, 168, 6, 8, 8, 288, 24, 18, 4, ... . - R. J. Mathar, Aug 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,7).

FORMULA

From R. J. Mathar, Apr 29 2008: (Start)

O.g.f.: x/(1 - 4*x - 7*x^2).

a(n) = -7^n*(A^n - B^n)/(2*sqrt(11)) where A = -1/(2+sqrt(11)) and B = 1/(sqrt(11)-2). (End)

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 2}, {1, -5}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{4, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)

PROG

(Sage) [lucas_number1(n, 4, -7) for n in xrange(0, 21)]# Zerinvary Lajos, Apr 23 2009

(MAGMA) [n le 2 select n-1 else 4*Self(n-1)+7*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Nov 12 2012

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-7*x^2))) \\ G. C. Greubel, Jan 01 2018

CROSSREFS

Sequence in context: A174248 A297309 A201350 * A144465 A024050 A236421

Adjacent sequences:  A015529 A015530 A015531 * A015533 A015534 A015535

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 20:01 EDT 2019. Contains 328373 sequences. (Running on oeis4.)