login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015530 Expansion of x/(1 - 4*x - 3*x^2). 23
0, 1, 4, 19, 88, 409, 1900, 8827, 41008, 190513, 885076, 4111843, 19102600, 88745929, 412291516, 1915403851, 8898489952, 41340171361, 192056155300, 892245135283, 4145149007032, 19257331433977, 89464772757004 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let b(1)=1, b(k) = floor(b(k-1)) + 3/b(k-1); then for n>1, b(n) = a(n)/a(n-1). - Benoit Cloitre, Sep 09 2002

In general, x/(1 - a*x - b*x^2) has a(n) = sum_{k=0..floor((n-1)/2)} C(n-k-1,k)*b^k*a^(n-2k-1). - Paul Barry, Apr 23 2005

Pisano period lengths: 1, 2, 1, 4, 24, 2, 21, 4, 3, 24, 40, 4, 84, 42, 24, 8, 288, 6, 18, 24, ... . - R. J. Mathar, Aug 10 2012

This is the Lucas sequence U(4,-3). - Bruno Berselli, Jan 09 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Wikipedia, Lucas sequence.

Index entries for linear recurrences with constant coefficients, signature (4,3).

FORMULA

a(n) = 4*a(n-1) + 3*a(n-2).

a(n) = (A086901(n+2) - A086901(n+1))/6. - Ralf Stephan, Feb 01 2004

a(n) = sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*3^k*4^(n-2k-1). - Paul Barry, Apr 23 2005

a(n) = ((2+sqrt(7))^n - (2-sqrt(7))^n)/sqrt(28). Offset 1. a(3)=19. - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

From Johannes W. Meijer, Aug 01 2010: (Start)

Limit(a(n+k)/a(k), k=infinity) = A108851(n)+a(n)*sqrt(7)

Limit(A108851(n)/a(n), n=infinity) = sqrt(7)

(End)

G.f. x*G(0) where G(k)= 1 + (4*x+3*x^2)/(1 - (4*x+3*x^2)/(4*x + 3*x^2 + 1/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 28 2012

G.f.: G(0)*x/(2-4*x), where G(k)= 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 6}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[a[n], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)

LinearRecurrence[{4, 3}, {0, 1}, 30] (* Vincenzo Librandi, Jun 19 2012 *)

PROG

(Sage) [lucas_number1(n, 4, -3) for n in xrange(0, 23)]# Zerinvary Lajos, Apr 23 2009

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012

CROSSREFS

Appears in A179596, A126473 and A179597. - Johannes W. Meijer, Aug 01 2010

Cf. A080042: Lucas sequence V(4,-3).

Sequence in context: A260746 A192526 A084155 * A256959 A181880 A010907

Adjacent sequences:  A015527 A015528 A015529 * A015531 A015532 A015533

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 23:29 EST 2016. Contains 278694 sequences.