login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015534 Expansion of x/(1 - 4*x - 11*x^2). 10
0, 1, 4, 27, 152, 905, 5292, 31123, 182704, 1073169, 6302420, 37014539, 217384776, 1276699033, 7498028668, 44035804035, 258621531488, 1518879970337, 8920356727716, 52389106584571, 307680350343160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,11).

FORMULA

a(n) = 4*a(n-1) + 11*a(n-2).

a(n) = (1/30)*(2 + sqrt(15))^n*sqrt(15) - (1/30)*sqrt(15)*(2 - sqrt(15))^n, with n >= 0. - Paolo P. Lava, Aug 06 2008

MATHEMATICA

Join[{a=0, b=1}, Table[c=4*b+11*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011 *)

LinearRecurrence[{4, 11}, {0, 1}, 30] (* Vincenzo Librandi, Jun 19 2012 *)

PROG

(Sage) [lucas_number1(n, 4, -11) for n in xrange(0, 20)] # Zerinvary Lajos, Apr 23 2009

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-11*x^2))) \\ G. C. Greubel, Jan 01 2018

CROSSREFS

Sequence in context: A240194 A278358 A274751 * A306054 A218274 A061693

Adjacent sequences:  A015531 A015532 A015533 * A015535 A015536 A015537

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 00:07 EST 2018. Contains 318052 sequences. (Running on oeis4.)