login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015533 a(n) = 4*a(n-1) + 9*a(n-2). 13
0, 1, 4, 25, 136, 769, 4300, 24121, 135184, 757825, 4247956, 23812249, 133480600, 748232641, 4194255964, 23511117625, 131792774176, 738771155329, 4141219588900, 23213818753561, 130126251314344, 729429374039425, 4088853757986796, 22920279398302009 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 4's along the main diagonal, and 3's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,9).

FORMULA

From R. J. Mathar, Apr 29 2008: (Start)

O.g.f.: x/(1-4*x-9*x^2).

a(n) = -9^n*(A^n - B^n)/(2*sqrt(13)) where A = -1/(2+sqrt(13)) and B = 1/(sqrt(13)-2). (End)

a(n) = Sum_{k, 0<=k<=n} A155161(n,k)*3^(n-k), n>=1. - Philippe Deléham, Jan 27 2009

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 4}, {1, -5}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{4, 9}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)

PROG

(Sage) [lucas_number1(n, 4, -9) for n in xrange(0, 22)] # Zerinvary Lajos, Apr 23 2009

(MAGMA) [n le 2 select n-1 else 4*Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Nov 12 2012

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-9*x^2))) \\ G. C. Greubel, Jan 01 2018

CROSSREFS

Sequence in context: A156701 A273120 A220381 * A207410 A278275 A301836

Adjacent sequences:  A015530 A015531 A015532 * A015534 A015535 A015536

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 15:32 EDT 2019. Contains 328116 sequences. (Running on oeis4.)