login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015535 Expansion of x/(1-5*x-2*x^2). 14
0, 1, 5, 27, 145, 779, 4185, 22483, 120785, 648891, 3486025, 18727907, 100611585, 540513739, 2903791865, 15599986803, 83807517745, 450237562331, 2418802847145, 12994489360387, 69810052496225, 375039241201899, 2014816311001945, 10824160037413523 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Pisano period lengths:  1, 1, 3, 2, 8, 3, 48, 2, 3, 8, 110, 6, 168, 48, 24, 4, 8, 3, 45, 8,... - R. J. Mathar, Aug 10 2012

This is the Lucas sequence U(5,-2). - Bruno Berselli, Jan 08 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (5,2).

FORMULA

a(n) = 5*a(n-1) + 2*a(n-2) with n>1, a(0)=0, a(1)=1.

a(n) = (1/33)*sqrt(33)*(((5/2)+(1/2)*sqrt(33))^n-((5/2)-(1/2)*sqrt(33))^n). [Paolo P. Lava, Jan 13 2009]

MATHEMATICA

Join[{a=0, b=1}, Table[c=5*b+2*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011*)

LinearRecurrence[{5, 2}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)

PROG

(Sage) [lucas_number1(n, 5, -2) for n in xrange(0, 22)]# [Zerinvary Lajos, Apr 24 2009]

(MAGMA) [n le 2 select n-1 else 5*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012

CROSSREFS

Cf. A201002 (prime subsequence)

Sequence in context: A221673 A257061 A052225 * A026292 A100193 A158869

Adjacent sequences:  A015532 A015533 A015534 * A015536 A015537 A015538

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 02:36 EST 2016. Contains 278959 sequences.