login
A015102
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-6.
22
1, 1, -5, -191, 40915, 53110057, -412878084725, -19264066381851695, 5392667163887921078275, 9057620836725683164283293369, -91279931160615494871228103624209605
OFFSET
0,3
LINKS
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-6 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-6*x)) = 1/(1-x/(1+6*x/(1-6^2*x/(1+6^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 27 2016
EXAMPLE
G.f. = 1 + x - 5*x^2 - 191*x^3 + 40915*x^4 + 53110057*x^5 + ...
MATHEMATICA
a[1] := 1; a[n_] := a[n] = Sum[(-6)^(i - 1)*a[i]*a[n - i], {i, 1, n - 1}]; Array[a, 12, 1] (* G. C. Greubel, Dec 24 2016 *)
m = 11; ContinuedFractionK[If[i == 1, 1, -(-6)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015102(n)
A(-6, n)
end # Seiichi Manyama, Dec 24 2016
CROSSREFS
Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), this sequence (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=6 of A290789.
Sequence in context: A138733 A222363 A316330 * A086124 A211505 A198485
KEYWORD
sign
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Dec 24 2016
STATUS
approved