login
A015108
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-11.
22
1, 1, -10, -1231, 1636130, 23957879562, -3858392581773300, -6835385537899011365535, 133202313157282627679850238250, 28553099061411464607955930776882965774
OFFSET
0,3
LINKS
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-11 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-11*x)) = 1/(1-x/(1+11*x/(1-11^2*x/(1+11^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 28 2016
EXAMPLE
G.f. = 1 + x - 10*x^2 - 1231*x^3 + 1636130*x^4 + 23957879562*x^5 + ...
MATHEMATICA
m = 10; ContinuedFractionK[If[i == 1, 1, -(-11)^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015108(n)
A(-11, n)
end # Seiichi Manyama, Dec 25 2016
CROSSREFS
Cf. A227543.
Cf. this sequence (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=11 of A290789.
Sequence in context: A027879 A194497 A287226 * A070065 A222793 A320959
KEYWORD
sign
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Dec 25 2016
STATUS
approved