login
A015106
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-9.
22
1, 1, -8, -665, 483544, 3173511682, -187386353065808, -99585165693268026701, 476312561203989614441440600, 20503694883570579788445502041773422, -7943551457092331370323478258038812629918704
OFFSET
0,3
LINKS
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-9 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-9*x)) = 1/(1-x/(1+9*x/(1-9^2*x/(1+9^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 28 2016
EXAMPLE
G.f. = 1 + x - 8*x^2 - 665*x^3 + 483544*x^4 + 3173511682*x^5 + ...
MATHEMATICA
m = 11; ContinuedFractionK[If[i == 1, 1, -(-9)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015106(n)
A(-9, n)
end # Seiichi Manyama, Dec 25 2016
CROSSREFS
Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), this sequence (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=9 of A290789.
Sequence in context: A247731 A231849 A159621 * A099126 A172919 A286394
KEYWORD
sign
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Dec 25 2016
STATUS
approved