This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013983 Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6). 3
 1, 0, 1, 1, 2, 3, 5, 7, 12, 18, 29, 45, 71, 111, 175, 274, 431, 676, 1062, 1667, 2618, 4110, 6454, 10133, 15911, 24982, 39226, 61590, 96706, 151842, 238415, 374346, 587779, 922899, 1449088, 2275281, 3572527 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of compositions of n into parts p where 2 <= p < = 6. [Joerg Arndt, Jun 24 2013] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5 Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,1). FORMULA a(n) = a(n-6) + a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006 G.f. 1  / ( (1+x)*(1-x^5-x^3-x)).  a(n)+a(n+1) = A060961(n). - R. J. Mathar, Mar 22 2011 MATHEMATICA CoefficientList[Series[1 / (1 - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 23 2013 *) LinearRecurrence[{0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 2, 3}, 50] (* Harvey P. Dale, Dec 31 2013 *) PROG (PARI) Vec(1/(1-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5-x^6))); // Vincenzo Librandi, Jun 24 2013 CROSSREFS First differences of A023437. Sequence in context: A048808 A263358 A239915 * A257863 A169986 A218021 Adjacent sequences:  A013980 A013981 A013982 * A013984 A013985 A013986 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 11:23 EDT 2019. Contains 323529 sequences. (Running on oeis4.)