login
A239915
A sequence giving the solution to the problem of identifying two complementary defectives.
1
1, 2, 3, 5, 7, 12, 18, 29, 44, 68, 104, 156, 249, 374, 566, 876, 1314, 2082, 3141, 4712, 7376, 11064, 17208, 26225, 39338, 62292, 93438, 142590, 219645, 329468, 526076, 790008, 1185012, 1845737, 2768606, 4341470, 6585788, 9878682, 15563061, 23344592, 35927504
OFFSET
0,2
LINKS
C. Christen, Optimal detection of two complementary defectives, SIAM J. Algebraic Discrete Methods 4 (1983), no. 1, 101--110. MR0689871 (84e:90041).
FORMULA
Page 102 of Christen (1983) gives an explicit formula for a(n).
MATHEMATICA
A239915[t_]:= Module[{s}, s:=Floor[(1+t)/(1+Log[2, 3])]; If[1 + 2^(t-s) < 3^(s),
(3^(s)-1 +2^(1+t-s))/2, Floor[3(3^(s) +2^(t-s))/4]]]; Table[A239915[i], {i, 0, 50}] (* Xiangdong Wen, Feb 25 2020 *)
CROSSREFS
Sequence in context: A280303 A048808 A263358 * A013983 A257863 A169986
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 13 2014
EXTENSIONS
More terms from Hugo Pfoertner, Mar 04 2020
STATUS
approved